Ejercicios
Aquí van algunos ejercicios seleccionados donde se aplican las ecuaciones diferenciales



Ejercicio 03 (Tarea 20/Viii/2015)
La solución general de
4t^2 y'' + 12t y' + 3y = 0
(para t >0) es la función
y(t) = K1 t^(-3/2) + K2 t^(-1/2)
Hallar la solución para los valores inicales y0 = 1/2, y1 = -1/6 en t=4
La función en t=4 es
y(4) = K1 (4)^(-3/2) + K2 4^(-1/2)
además 4= 2^2, entonces
y(4) = K1 (2)^(-3) + K2 2^(-1)
igualando al valor y0 = 1/2 tenemos
K1 (2)^(-3) + K2 2^(-1) = 1/2 ... (eq1)
De esta ecuación (eq1)
2^(-3) K1 = 2^(-1) - K2 2^(-1) ==> K1 = 2^(2) [ 1- K2 ]
K1 = 4(1-K2) ...(eq2)
No conocemos K2 aún. Para determinarla, veamos la derivada de y(t)
y'(t) = (-3/2) K1 t^(-5/2) - (1/2) K2 t^(-3/2).
ahora en t=4
y'(4) = [-3/2 K1 4^(-5/2) - 1/2 K2 4^(-3/2)
usando 4=2^2
y'(4) = [-3 K1 2^(-5) - K2 2^(-3)] / 2.
mientras que con el valor inicial y1 = -1/6
-3/2 K1 2^(-5) - 1/2 K2 2^(-3) = -1/6 ... (eq3)
y mult por (-2):
3 K1 2^(-2) + K2 = 2^(3)/3 ... (eq3)
sustituyendo K1 de la (eq2), en esta (eq3)
3 * [ 2^(2) (1- K2 )]*2^(-2) + K2 = 3 *(1- K2 ) + K2 = 2^(3) /3
3 - 2K2 = 2^(3) /3
despejando K2:
K2 = 1/2 [ 3 - 2^(3) /3 ]
es decir
K2 = 1/2 [ 3 - 8/3 ] = 1/2 [ 1/3 ] = 1 / 6;
por lo tanto
K1 = 4*[1 - 1/6 ] / 2 = 20/6 = 10/3.
La solución para los valores inicales y0 = 1/2, y1 = -1/6 en t=4 es, entonces :
y(t) = (10/3) t^(-3/2) + (1/6) t^(-1/2)
Ejercicio 02
I'm a paragraph. Click here to add your own text and edit me. It’s easy. Just click “Edit Text” or double click me and you can start adding your own content and make changes to the font. Feel free to drag and drop me anywhere you like on your page. I’m a great place for you to tell a story and let your users know a little more about you.
Tip: Use this area to describe one of your services. You can change the title to the service you provide and use this text area to describe your service. Feel free to change the image.
Ejercicio 03
I'm a paragraph. Click here to add your own text and edit me. It’s easy. Just click “Edit Text” or double click me and you can start adding your own content and make changes to the font. Feel free to drag and drop me anywhere you like on your page. I’m a great place for you to tell a story and let your users know a little more about you.
Tip: Use this area to describe one of your services. You can change the title to the service you provide and use this text area to describe your service. Feel free to change the image.